facebook-pixel

Earth’s biggest, smallest, oddest life forms are getting new attention from scientists. A Utah author explores what they’re learning.

(Chris Detrick | The Salt Lake Tribune) Elephants Christie and Zuri at Utah's Hogle Zoo in 2015. Utah cancer researchers are using blood from the zoo's elephants to investigate a possible pathway to a cure.

Researchers have long ignored superlative life forms — the biggest, the tiniest, ones that can survive extremes — as outliers, Utah author Matthew D. LaPlante says.

But they’re now realizing the value of studying nature’s “oddballs,” he adds, which are helping scientists discover how to better fight disease and aging, understand the history of life on this planet and how we might reach others.

LaPlante’s new book, “Superlative: The Biology of Extremes” was released this week. On Friday at 7 p.m., the associate professor of journalistic writing at Utah State University will read from “Superlative” and talk about his work at The King’s English Bookshop, 1511 S. 1500 East, Salt Lake City. The event is free and open to the public.

The co-writer of several books on the intersection of scientific discovery and society, LaPlante now is working with Harvard geneticist David Sinclair on a book about human longevity. “Superlative” from BenBella Books is the first solo book by LaPlante, a former reporter for The Salt Lake Tribune.

As he surveys unusual life around the earth, there are stops in Utah — from Pando, the aspen clone in Sevier County believed to be the single most massive living organism known on Earth, to pop-up appearances by researchers at the University of Utah and elephants at Hogle Zoo in Salt Lake City.

Vast sequences of the genetic coding that humans share with elephants still perform similar functions in each species, LaPlante explains. And long after the two diverged, both developed the same genetic solution for the oxygen needs of a larger brain.

So there’s reason to believe that responses elephants have evolved — such as rarely developing cancer — might be spurred in humans.

The potential within a genome for such new traits to develop is at the heart of comparative genomics — and at the work of Utah pediatric oncologist Josh Schiffman.

This excerpt from “Superlative” explains how Schiffman began working with Hogle Zoo’s African elephants — the largest living land mammals — to fight cancer.

Excerpt: ‘Why elephant cells are like empathetic zombies’

It all started in the summer of 2012, when [pediatric oncologist Josh] Schiffman’s beloved dog, Rhody, passed away [due] to histiocytosis, a condition that attacks the cells of skin and connective tissue. “It was the only time my wife has ever seen me cry,” he told me. “Rhody was like our first child.”

Schiffman had heard dogs like his had an elevated risk of cancer, but it wasn’t until after Rhody’s death that he learned just how elevated it was. Bernese mountain dogs who live to the age of ten have a 50 percent risk of dying from cancer.

“Suddenly it dawned on me there was this whole other world, this young field of comparative oncology,” he said, “and I was pulled into the idea of being a pioneer and maybe a leader to help move things along.”

Schiffman had long been intrigued by the fact that size doesn’t appear to correlate to cancer rates — a phenomenon known as “Peto’s Paradox,” named for Oxford University epidemiologist Richard Peto. But when Schiffman took his children on an outing to Utah’s Hogle Zoo — the same place I sometimes go to have lunch with my elephant friend, Zuri — everything came together.

A keeper named Eric Peterson had just finished giving a talk to a crowd of visitors, mentioning in passing that the zoo’s elephants have been trained to allow the veterinary staff to take small samples of blood from a vein behind their ears. As the crowd dispersed, an angular, excited man approached him.

“I’ve got a strange question,” Schiffman said.

“We’ve heard them all,” Peterson replied.

“OK then — how do I get me some of that elephant blood?” Schiffman asked.

Peterson contemplated calling security. Instead, after a bit of explanation from Schiffman, the zookeeper told the inquisitive doctor he’d look into it. Two and a half months later, the zoo’s institutional review board gave its blessing to Schiffman’s request.

Things moved fast after that.

(Steve Griffin | Tribune file photo) Lab specialists Lauren Donovan Cristhian Toruno, Lisa Abegglen and researcher Joshua Schiffman, from left, are testing the effects of elephant gene p53 (EP53) in human cancer cells at the Huntsman Cancer Institute.

Cancer develops in part because cells divide. During each division the cells must make a copy of their DNA, and once in a while, for various reasons, those copies include a mistake. The more cells divide, the greater the odds of an error, and the more prone an error is to be duplicated again and again.

And elephant cells? Those things are dividing like crazy. Based on the number of cell divisions elephants need to get from Zuri’s size when we met to the size she is now, in just a few short years, it stands to reason they should get lots of cancer. Yet they almost never do.

“Going from 300 pounds as a calf to more than 10,000 pounds, gaining three-plus pounds a day, they’re growing so quickly, so big and so fast — baby elephants really shouldn’t make it to adulthood,” Schiffman said. “They should have 100 times the cancer. Just by chance alone, elephants should be dropping dead all over the place.” Indeed, he said, they should probably die of cancer before they’re even old enough to reproduce. “They should be extinct!”

Already, comparative oncologists suspected the exceptionally low rate of cancer in elephants had something to do with p53, a gene whose human analog is a known cancer suppressor. Most humans have one copy — two alleles — of the gene. Those with an inherited condition known as Li–Fraumeni syndrome, however, have just one allele — and a nearly 100 percent chance of getting cancer. The logical conclusion is more p53 alleles mean a better chance of staving off cancer. And elephants, it turns out, have twenty of them.

The big find that came from Schiffman’s exploration of the elephant blood he got at the zoo, though, was not just that there were more of these genes in elephants, but that the genes behaved a little bit differently, too.

In humans, the gene’s first approach for suppressing tumor growth is to try to repair faulty cells — the sort that cause cancer. So, at first, Schiffman’s team assumed having more p53 genes meant elephants had bigger repair crews. With the goal of watching those crews in action, the researchers exposed the elephant cells to radiation, causing DNA damage. But they noticed that, instead of trying to fix what was broken, the elephant cells seemed to grow something of a conscience.

To understand this, it’s helpful to think about how you’d respond in a zombie apocalypse. Of course you’d fight long and hard to keep from being infected, right? But if a zombie was about to chomp down on your arm, and there was nothing you could do to stop it, and if you had but one bullet remaining in your gun —and a few moments to consider what you might do to your fellow humans as a part of the legion of the undead — what would you do?

That’s what elephant cells do, too. Under the directive of p53, mutated cells don’t put up a fight. Upon recognizing the inevitability of malignant mutation, they take their own lives in a process known as apoptosis.

And they don’t just do this for one kind of cancer. The p53 gene apparently programs cells to do this in response to all kinds of malignantly mutated cells in elephants—a finding that flies in the face of the conventional assumption that there is no one singular cure for the complex group of disorders we call cancer.

When I first met Schiffman in 2016, he was brimming with excitement about the potential elephants have to help us understand cancer. He was also very cautious not to suggest he was anywhere near a cure, nor that he ever would be.

Just a few years later, though, Schiffman was speaking openly about his intention to rid the world of cancer. And, to that end, what’s happening in his lab is encouraging, to say the least.

He and his team have been injecting cancer cells with a synthetic version of a p53 protein modeled on the DNA he’s drawn from Zuri and other elephants from around the world. Viewed on time-lapse video, the results are unmistakable and amazing.

Breast cancer. Gone.

Bone cancer. Gone.

Lung cancer. Gone.

One by one, each type of cancer cell falls victim to zombie-cell hara-kiri, shriveling and then exploding, and leaving nothing behind to mutate. Schiffman is now working with Avi Schroeder, an expert in nanomedical delivery systems at Technion-Israel Institute of Technology, to create tiny delivery vehicles to take the synthetic elephant protein into mammalian tumors.

If this was all the benefit we ever derived from studying elephants, it would be plenty.

But it’s not. Not at all.

(Courtesy of BenBella Books | Keith Johnson Photography) Author Matthew D. LaPlante stands in Big Cottonwood Canyon near Solitude in 2018.