Quantcast
Get breaking news alerts via email

Click here to manage your alerts
Unique floating lab showcases ‘aliens of the sea’


< Previous Page


Graduate student Rachel Sanford had given a series of these animals a cut, and then biopsied the healing tissue 30 minutes, an hour and two hours later. She’s trying to tease out what genetic activity spurs the steps of healing.

She studies the comb jellies’ rudimentary brains in much the same way.

Join the Discussion
Post a Comment

"I work on these things that are kind of like jellyfish, but they’re not jellyfish at all. And I take out their brain. And then it grows back. And then I try to figure out how it grows back," is Sanford’s simplified explanation.

She’s looking for master regulators, key molecules that control that regrowth. If she can find some, a logical next step would be to investigate whether people harbor anything similar that might point to pathways important in spinal cord or brain injuries.

A clue, Moroz says, probably will be found in the differences between comb jelly species. "Why does one regenerate, and another not? That is the million-dollar question."

Evolution shows "there is more than one design for how to make a cell, how to make a brain," he adds.

The floating lab was born of frustration, Kohn says as she keeps close watch on the sequencing.

While there’s been an earlier attempt at less complex DNA fingerprinting at sea, traditionally marine scientists collect animals, freeze samples and ship them home for genetic research.

But often, Moroz had shipments lost in transit or held up at U.S. Customs, thawed and ruined. Plus, some creatures’ genetic material begins breaking down almost immediately after they’re caught.

"When I think of all the animals we’ve lost through years and years," Kohn says, shaking her head. To completely map the genome of a single comb jelly species, "it took us a year to get DNA that wasn’t degraded."


story continues below
story continues below

Researchers usually collect extra animals as insurance. But the supercomputer’s rapid feedback means with Moroz’s new project, "there’s a lot more preservation," says University of Washington biology professor Billie Swalla, who is watching it with interest. "If you have unused animals, you can return them."

The pieces for the floating lab fell into place last fall when Moroz met a University of Florida alumnus willing to lend his boat for the trial runs. Then, the Copasetic’s captain noted that the main deck could fit a shipping container like freighters use to transport goods.

The nonprofit Florida Biodiversity Institute found one for sale, welded in windows and installed lab fixtures, and the team was off.

———

If oceanography and brains seem strange bedfellows, consider: Much of what scientists know about how human neurons and synapses, their connections, form memories came from years of studies using large sea slugs, called Aplysia, such as the one graduate student Emily Dabe gently cups in her hand.

Human brains have 86 billion neurons, give or take. Sea slugs have only about 10,000 neurons, large ones grouped into clusters rather than a central brain, Dabe explains while dissecting the easy-to-spot cells. She brought the animal on board as a control for experiments with the more mysterious creatures.

Yet scientists can condition sea slugs, with mild shocks to their gills, to study that type of memory, Dabe says. Her own research examines the neurochemical serotonin in the animals.

A bit further up the neural ladder, the octopus, with the most complex nervous systems of any animal without a backbone, has about 500 million neurons, says graduate student Gabrielle Winters. There are reports of them learning by watching, although Moroz cautions that’s highly controversial.

Understanding how multiple genes work together to make increasingly complex memories is a building block toward better understanding of brain diseases. It requires working with simple creatures, notes the University of Washington’s Swalla, an invertebrate specialist.

"We sequenced the human genome but we still don’t know how it works," she explains. "To figure out how it works, you have to have other models you can work on. A lot of these genes are the same, and they interact in the same kind of pathways."

Moroz compares the genetic interactions to learning grammar: knowing an animal’s, or a person’s, DNA is like knowing the alphabet and some words, but not how they’re strung together to make a sentence.

Next Page >


Copyright 2014 The Salt Lake Tribune. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Top Reader Comments Read All Comments Post a Comment
Click here to read all comments   Click here to post a comment


About Reader Comments


Reader comments on sltrib.com are the opinions of the writer, not The Salt Lake Tribune. We will delete comments containing obscenities, personal attacks and inappropriate or offensive remarks. Flagrant or repeat violators will be banned. If you see an objectionable comment, please alert us by clicking the arrow on the upper right side of the comment and selecting "Flag comment as inappropriate". If you've recently registered with Disqus or aren't seeing your comments immediately, you may need to verify your email address. To do so, visit disqus.com/account.
See more about comments here.
Staying Connected
Videos
Jobs
Contests and Promotions
  • Search Obituaries
  • Place an Obituary

  • Search Cars
  • Search Homes
  • Search Jobs
  • Search Marketplace
  • Search Legal Notices

  • Other Services
  • Advertise With Us
  • Subscribe to the Newspaper
  • Access your e-Edition
  • Frequently Asked Questions
  • Contact a newsroom staff member
  • Access the Trib Archives
  • Privacy Policy
  • Missing your paper? Need to place your paper on vacation hold? For this and any other subscription related needs, click here or call 801.204.6100.