Get breaking news alerts via email

Click here to manage your alerts
Shaped like a rainbow trout, the FILOSE robot can replicate the ability of many fish to sense the speed and direction of currents to navigate more efficiently. (Centre for Biorobotics, Tallinn University of Technology)
No science fiction: Robots are gaining human abilities
First Published Aug 08 2013 09:29 am • Last Updated Aug 08 2013 09:29 am

It may seem uncomfortably close to science fiction, but robots are moving ever nearer to having humanlike abilities to smell, feel and see their surroundings, allowing them to operate more independently and perform some of the dangerous, dirty and dull jobs people don’t want to do.

They can "smell" gas leaks, conduct underwater surveillance and even sort boxes by shape and color and toss them into the appropriate warehouse bin. Advances in sensor technology and software allow these machines to make split-second decisions without human masters overseeing them about how to follow a scent trail or where to go to next.

Join the Discussion
Post a Comment

"They are gaining human capabilities, whether it’s smell, or touch or recognizing our voices," said Daniel H. Wilson, a Ph.D in robotics and the author of "Robopocalypse," a techno-thriller about what happens when robots go wrong. "If they are going to solve human problems, they will have to have human abilities. Those are things that robots will have to understand if they play a role in our lives."

Until now, robots have had to navigate with small infrared sensors that keep them from bumping into things. Some have relied on video cameras that send images to human operators. But a new generation of robots is gaining the ability to understand voices, see objects with the same depth perception as humans and use grasping arms that have dexterity close to that of humans.

Of course, none of them is yet as lifelike as "Sonny," the android of Isaac Asimov’s novel (and the subsequent movie) "I, Robot," who feels, can think for himself, move on his own and, in a limited way, emotes. Most robots with advanced sensing abilities are still in the experimental stage. More than toys but not yet tools, they work well in the laboratory but can’t yet handle real-world situations.

Take, for example, the robots that are sorting boxes, picking them up and tossing them into the right bin. This robot uses two-dimensional and three-dimensional video cameras and software to "look" at the size and shape of the box and then decide where it should go.

The robot works pretty well — as long as the boxes are pretty much rectangular and aren’t moving, says Stanford University computer science professor Gary Bradski, co-founder of Industrial Perception, the start-up that invented the robot. But it isn’t quite ready to replace human workers in the mailroom or on the factory floor.

"It’s easy to get 80 or 90 percent of the way there," he said. " But it’s getting the speed and reliability to make it economic. You can’t fail very often; otherwise, you’re not saving any labor."

Getting robots to smell is one of the bigger challenges. A recent project out of the University of Tokyo takes a step in that direction. Scientists there recently unveiled a tiny robot that is driven by a male silkworm moth responding to a female moth’s seductive pheromone aroma.

story continues below
story continues below

The researchers built a motorized wheeled car that moves when a moth, spurred by the smell, launches into a mating dance of repeated zigzags on top of a trackball, similar to the ones used inside a computer mouse. As the moth does its dance, sensors transmit its motions to the robot’s motors, allowing it to follow the path chosen by the male.

The researchers said the "odor-tracking behaviours of animals" could eventually be "applied to other autonomous robots so they can track down smells, and subsequent sources, of environmental spills and leaks when fitted with highly sensitive sensors."

Noriyasu Ando, an associate professor at the University of Tokyo Research Center for Advanced Science and Technology, who worked on the moth robot, said in an e-mail that the challenge was to develop a robot that could "behave alone, free from external wired connections because the silk moth turns quickly and rotates very often."

Ando said the ultimate goal is to develop a robot with its own smelling capabilities, one that can follow a trail just like the moth on the trackball.

The team is now trying to build an artificial brain they’ve named Kei; the motor-moth using its sense of smell is one step toward that goal, he said.

Achim Lilienthal, who directs the mobile robotics and olfaction lab at Orebro University in Sweden, said smell is more complicated for robots than vision. Cameras can see an object as long as there is enough light, while odors exist as plumes and patches in the air and are not consistent in strength, which makes finding the source difficult.

Lilienthal gives the example of methane emanating from an old landfill. The town managing the landfill had set up devices to capture the gas produced by the landfill’s decay and burn it to heat the local hospital. But over time, as the plastic lining beneath the landfill developed cracks, more than half of the methane was evading the capture technology. The town hired someone to walk around the landfill and sniff for leaks, but that didn’t work very well because the human nose is not very efficient.

Enter Lilienthal’s "gasbot,"which looks like a lawnmower with a big metal eyeball perched on top of a metal pole. This mini all-terrain vehicle picks up smells using two laser beams: One absorbs the chemical signature of the methane and determines its concentration in the air. The second helps provide a three-dimensional map of the gas plume. The advantage of the gasbot is that the lasers detect the gas remotely, without machine or human having direct contact with the plume.

"For most gas sensors [such as smoke detectors], you need to [physically] encounter the smell," whereas the gasbot uses its lasers to detect gas at a distance, Lilienthal said.

Scientists are working as well to create effective underwater robots. This task is very challenging because there is often not enough light for cameras to work well, while swirling currents and eddies play havoc with smells and chemical plumes.

Next Page >

Copyright 2014 The Salt Lake Tribune. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Top Reader Comments Read All Comments Post a Comment
Click here to read all comments   Click here to post a comment

About Reader Comments

Reader comments on sltrib.com are the opinions of the writer, not The Salt Lake Tribune. We will delete comments containing obscenities, personal attacks and inappropriate or offensive remarks. Flagrant or repeat violators will be banned. If you see an objectionable comment, please alert us by clicking the arrow on the upper right side of the comment and selecting "Flag comment as inappropriate". If you've recently registered with Disqus or aren't seeing your comments immediately, you may need to verify your email address. To do so, visit disqus.com/account.
See more about comments here.
Staying Connected
Contests and Promotions
  • Search Obituaries
  • Place an Obituary

  • Search Cars
  • Search Homes
  • Search Jobs
  • Search Marketplace
  • Search Legal Notices

  • Other Services
  • Advertise With Us
  • Subscribe to the Newspaper
  • Access your e-Edition
  • Frequently Asked Questions
  • Contact a newsroom staff member
  • Access the Trib Archives
  • Privacy Policy
  • Missing your paper? Need to place your paper on vacation hold? For this and any other subscription related needs, click here or call 801.204.6100.